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Abstract 

Pipeline generally extends over long distances traversing through wide variety of different 

soils, geological conditions and regions with different seismicity and ground motions. 

Vulnerability of the pipeline due to seismic hazards can be divided into three categories i.e. 

hazard due to ground vibration, hazard due to faulting and hazard due to permanent 

ground deformation (PGD). Though there are no severe damages observed due to ground 

vibration in the modern buried pipelines, damage may be triggered due to secondary effect 

of land-sliding and ground motion due to liquefaction. Main stream researches in the past, 

especially analytical models are limited to strike slip fault motions with tension in pipe case 

only. Even though incorporating the large geometric changes in analytical study is a tricky 

task, pipeline subjected to the large ground motion itself is a phenomenon of large 

geometric changes. Especially when pipeline is subjected to compression, where in 

addition to material deformation, it also undergoes general as well as local buckling with 

bending, contradictorily past work mostly assumed that pipeline is under tension.  

With day by day increasing capacity of computation and advancement in numerical 

modelling, one can find more facts for pipeline subjected to large motions including cases 

of pipe under compression as well. In this paper, past work is reviewed for pipeline 

subjected to large ground motion. A three dimensional FE based numerical model is 

suggested to carry out pipeline performance of buried pipeline subjected to large motion. A 

proposed model includes material nonlinearity, as well as it considers the large geometric 

deformation. For this purpose, three dimensional FE program is developed using MATLAB. 

Displacement controlled Arc-length technique is implemented to solve the nonlinear 

behavior. To reduce the computation time of analysis here parallelization tool kit of 

MATLAB is utilized. 



Bhoo-Kampan  

2 

 

Keywords: Buried continuous pipeline; Large ground motion; Nonlinear-large deformation 

FEM; Displacement controlled Arc-length technique. 

1. Introduction 

Pipelines are common transportation means for oil and natural gas, which always act as an 

important lifeline facility for any nation. Generally, these pipelines are laid underground for 

economic, aesthetic, safety, and environmental reasons. While running through the length 

and breadth of a country the pipeline is exposed to diverse soil conditions. Presently, India 

operates and maintains 22,057 km (11,218 km of product, 8,528 km of crude oil, and 2312 

km of LPG) of pipelines. Seismic hazard of pipeline is well demonstrated and documented 

during past several earthquakes all over the world. Predominant study for seismic hazard 

of pipeline started after the 1971 San Fernando earthquake. Newmark and Hall (1975) did 

the pioneer work for pipeline crossing the fault by assuming pipe as cable in their 

analytical study. The only force considered acting on the pipeline is the friction force at the 

pipe-soil interface along the longitudinal direction without lateral force offered by the soil. 

This model is further modified by Kennedy et al. (1977) by incorporating the lateral 

pressure offered by the soil. In 1985 Wang and Yeh further modified the model by dividing 

pipe into three regions depending upon the curvature in the pipeline. Region I is near the 

fault plane, while regions II and III are away from it. It was also assumed that strain in 

region II and III are elastic while the strain in region I is inelastic. For straight portion in 

region III they used the theory of beam on elastic foundation. In a model, they notify that 

maximum bending strain is in the region II and crucial combination of axial and bending 

strain will be at junction of II and III region, hence, concluded that the pipe would fail at 

this junction. It seems counter intuitive since one expects tensile ruptures at or very near to 

the fault crossing. Newly Karamitros et al. (2007) introduced a number of refinements in 

the method proposed by Wang and Yeh (1985). Previous method overlooked the effect of 

axial force on bending stiffness. Karamitros et al. suggested most unfavorable combination 

of axial and bending would not necessarily take place at the end of high curvature portion 

but within the zone, closer to the fault crossing point.  

Likewise analytical models were developed for transverse PGD where pipeline was 

modeled with the assumption of small deformation. For the case of transverse PGD pipeline 

is mainly subjected to the bending. While in case of longitudinal PGD pipeline, it is exposed 

to the longitudinal tension and compression strains, which is less studied in the past. 

In addition to the above-mentioned analytical models there are several numerical models 

proposed, which include a model for beam on nonlinear Winkler foundation. In which pipe 

is modeled with beam/shell elements and soil with springs (Takada et al. 1998). Nodes of 

the shell elements of the pipe are attached to soil that is modelled as springs. However, 
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these models are fine to pipeline but too harsh to the soil behavior, nevertheless the 

behavior of soil has significant impact on the pipeline response. 

1.1  Scope 

Though improved analytical models provide a good result, the models are developed with 

fundamental assumptions that the curvature of the pipeline on either side of fault plane is 

symmetrical. In case of strike slip fault the pipeline crossing essentially deforms in the 

horizontal plane where soil on either side of the pipeline extends to very large or for 

infinite distance. This offers the symmetric resistance to the pipe on either side in the plane 

of pipe deformation. This symmetry also takes care of point of contra- flexure to draw it 

closer to the pipeline fault crossing. Hence, the analytical models developed in the past are 

applicable to strike slip fault motions case only. For dip slip fault motion, the pipe-soil 

interaction forces along the fault motion are dissimilar due to great variation in the depth. 

Lesser depth of the soil above the pipe offers less resistance compared to bottom soil for 

deformed pipe. In addition to this, the deformation of the pipe greatly depends on the soil 

movement of the upper layer which usually differs in hanging wall and footwall. Hence, 

assumptions for identical curvature on either side of the fault plane is no longer valid. 

Analytical study is also restricted for pipeline under tension cases. Pipeline under 

compression usually involves the general as well as local geometric instability issues (e.g. 

pipeline during 1999, Izmit, Turkey earthquake (EERI, 1999)). Handling complex geometric 

stability is always hard to model in analytical studies. Faulting itself is phenomenon of large 

geometric changes, hence, theory of small deformation is no longer suitable for pipeline 

fault crossing which were used in the past. Hence, study of the pipeline under compression 

needs appropriate understanding as it involves both material as well as geometric failure. 

However numerical models proposed by Takada et al. (1998), LIU Aiwen et al. (2004) for 

buried pipeline using shell element and nonlinear springs for pipe and soil, respectively, 

can perform for pipeline under compression. Though, post yielding of soil spring gives 

higher strain value in pipe. This could be the result of the inadequacy of the spring models 

to incorporate the actual soil behavior during soil yielding. In addition, these models do not 

consider the large geometric changes of upper soil layer, which has significant effect on 

pipeline performance. Stiffness of each individual spring is independent i.e. each spring 

behaves independently which disregard the effect of lateral soil confinement. Considering 

limitation of previous models and day-by-day increasing capacity, speed and powerfulness 

of the computer, the computer can make it possible to solve field problems by doing more 

realistic numerical analysis. Here, a more realistic numerical program using three 

dimensional FEM is developed for buried continuous pipelines. This program is developed 

using isoperimetric brick element. 
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The developed model takes care of material as well as large geometric changes to comprise 

fault motion. 

 

2. Methodology 

2.1  Numerical Modeling 

The governing nonlinear finite element equation of solid continuum can be obtained from 

principle of virtual work. Eq.1 is adaptation from the one presented by K. J. Bathe (1996) 

and J.N. Reddy (2004) for updated Lagrangian approach. 
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̂t   = Cauchy stress vector 

 B   = Transformation matrix 

Rtt 
 = vector of externally applied loads at time t+Δt 

 

The numerical integration is performed according to Gaussian quadrature rule. A code is 

developed in MATLAB-7.9 for three dimensional FEA using 8 nodded isoparametric 

elements.  The successes of any nonlinear analysis primarily depends on the accuracy, 

convergence, efficiency and stability of nonlinear solution technique. The nonlinear Eq. 1 

can be solved by various nonlinear solution techniques available in the literature. Among 

this full or modified Newton-Raphson, method is simple to understand, implement and it 

generally converges in few iterations. However, this method fails to trace the nonlinear 

equilibrium path through the limit or bifurcation points, in vicinity of limit points, tangent 

stiffness matrix becomes singular and the iteration procedure diverges. This is common in 

buckling and strain softening nonlinear material behaviour type of the analysis. The 

displacement boundary condition in nonlinear analysis needs linearization of the 

prescribed boundary displacement, which can be easily incorporated in other methods like 

arc-length method. Hence, more robust arc-length method is employed for this work. Arc-

length method was originally developed by Riks (1972; 1979) and Wempner (1971) and 

later modified by several researchers. 

 

2.2 Arc-length Method 
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Though this method was developed in 70s a number of modifications have been suggested 

in the past few years. One can find elementary of the method from any standard literature 

either from Riks (1972, 1976) papers or Crisfield (1981) etc. Generally there are two 

approaches which are used, a fixed arc length and varying arc length. The fixed arc length is 

suitable for load and/or forced controlled, while for path following method, new arc-length 

is evaluated at the beginning of each load step to ensure the achievement of the solution 

procedure. The success of the path following method depends on three essential stages. 

Firstly, proper selection of root for quadratic equation obtained by simplifications of the 

additional constrains equation, which leads to a quadratic equation in terms of the 

incremental load factor. Secondly, is predicting the value of the load-factor for each 

increment. Generally, load-factor for current increment is computed depending on the rate 

of convergence of the solution process in previous increment. For first increment, trial 

value is assumed as 1/5 or 1/10 of total load (Memon et al. 2004). Finally, to avoid the 

doubling back of the equilibrium path, determination of the sign for the predicted load 

factor needs sufficient alertness. In case of divergence from the solution path, the arc-

length is reduced and computations are done again. 

 
 

Figure 1. Iterative Procedure for Arc-Length Method 

Generally, incremental equations in structural nonlinear static analysis take the 

following form: 

      RFf ittittitt )1(11                                                                                        (2) 

Where,   ftt 

= the out of balance force, λ = a scalar, known as load level parameter, which 

is considered as an unknown parameter and R is a given fixed external force vector. The 
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incremental displacement for current load step with modified Newton-Raphson method 

assumption of fixed KT is calculated as, 

 
        uuu ttittittitt ˆ111           (3) 
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Note that the KT is evaluated at the end of using the converged solution (t)u of the last load 

step (Fig. 1). Hence improved prediction of the equilibrium configuration can be obtain as 
 ittttt uuu  

      (6) 
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For the first iteration of the first load step it is assumed that u = 0, for the first iteration of 

other than first load step 
 11 t

 can be calculated from incremental arc-length form written 

as, 

 
222 lRRuu        (9) 

Where Δu and λ are converged incremental quantities, ∆l is fixed radius of desired 

intersection, and ψ is the scaling parameter for loading terms, for cylindrical arc-length 

method, ψ = 0 (Crisfield, 1981); while for the spherical arc-length methods ψ = 1. For 

cylindrical arc-length Eq. 9 simplified as, 
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Substituting for 
 itt u  from Eq. 7 gives quadratic equation for incremental in the load 
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To avoid the tracking backing the equilibrium path Crisfield suggested that the root should 

be such that the angle between the incremental solutions at two consecutive iterations 
 1 iu  and 

 iu  be minimum. The incremental load factor λ is updated according to Eq. 8. 

 

2.2.1 The Predictor Solution 

 

The auto-selection and auto-adjustment of the arc-length increment in each incremental 

step are very important, which are related to the correctness and efficiency of the 

numerical algorithms. In order to do that, the convergent information in the last arc-length 

incremental step is very useful and must be analyzed. The main equation in controlling the 

arc-length increments available is as follows: 
n
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Where, tΔl is the arc-length used in the last iteration of last increment, Id is the number of 

desired iterations (usually < 5) and I0 is the number of iterations required for convergence 

in the previous step. Crisfield suggested that n should be set to ½. The first arc-length is 

computed as 

 
  uul ˆˆ 1111                         (13)  

Hence, the incremental load factor for cylindrical arc-length method can be 

predicted as 

 

uu

l

ˆˆ
)(

11

11









       (14) 

 

The choice of the sign of the incremental load factor in the predictor phase of arc-length 

methods is known to be of paramount importance in determining the success of such 

procedures in tracing unstable equilibrium paths. If the wrong sign is predicted, the 

solution sequence `doubles back' on the original load-deflection curve and the arc-length 

method fails to trace the complete path. Many procedures have been proposed to predict 

the continuation direction, i.e., to choose the sign of δλ in the predictor solution such that it 

does not `track back' on the current path. The most popular ones appear to be the 

predictors based on 

(a) The sign of current tangent stiffness determinant. Follow the sign of |KT| 

sign(δλ) = sign(|KT|) 

(b) Incremental work. Follow the sign of the predictor work increment: 

sign(δλ) = sign (
Tû R)  
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(c) The predictor criterion of Feng follow the sign of history of the current 

equilibrium path and the current tangential solution. 

sign(δλ) = sign (
Tû Δu) 

Procedure (a) is widely used and works well in the absence of bifurcations. In the presence 

of bifurcations, however, it is known not to be appropriate and fails in most cases. As 

pointed out by Crisfield, its ill behaviour stems from the fact that the sign of | KT| changes 

either when a limit point or when a bifurcation point is passed. In this case, the predictor 

cannot distinguish between these two quite different situations, unless further analyses are 

undertaken. In the presence of a bifurcation, instead of following the current path, the 

solution will oscillate about the bifurcation point. E.A. de Souza (1999) stated that the 

procedure (b), on the other hand, is `blind' to bifurcations and can continue to trace an 

equilibrium path after passing a bifurcation point. However, this criterion proves 

ineffective in the descending branch of the load-deflection curve in `snap-back' problems, 

where the predicted positive `slope' will provoke a `back tracking' load increase. Feng et al. 

(1996) proposed a direction prediction criterion (c), whereby, the sign of the predictor 

load factor is made to coincide with the sign of the internal product between the previous 

converged incremental displacement Δu and the current tangential solution, Tû . A key 

point concerning the above criterion is the fact that Δu carries with it information about the 

history of the current equilibrium path. E.A. de Souza (1999) showed by means of 

geometric arguments that the resulting predictor of Feng et al. (1996) approach can easily 

overcome the problems associated with criteria (a) and (b). 

  

2.3 Validation of Code 

For the validation of developed code, tests have been performed on the 3D cantilever beam. 

Load- deflection curve is compared with commercially available finite element package 

ANSYS-12. Material behavior assumed for the test is same as pipe material. Beam 

dimensions, meshing and point load considered at free end are given in Table 1. Figure 2 

shows perfectly matching load-deflection curve obtained from developed code and ANSYS. 

 

2.4  Model Dimensions 

 

The coordinate system and notations used for this work are shown in Figure 3. In reality, 

soil media does not have any fixed boundaries or can be assumed at infinite distance, which 

is virtually impossible to incorporate in the numerical model, hence model dimensions are 

determined for boundary effect and it is considered as 80m (L) x 12m (H) x 15m (W). 
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Figure 2. Comparison of results between ANSYS and FE code. 

 

Table 1. Comparison of Code and ANSYS results 

 

L x D x B  

(m) 

Element size  

(m) 

Point load  

(kN) 

Umax(m) 

Model ANSYS 

3.0 x 0.2 x 0.05 0.05 x 0.05 x 0.05 80 0.130 0.135 

 

 

 

 

(a)                                                                       (b) 

Figure 3 (a). Plan view of buried pipeline model for strike-slip fault motion. 

(b)Sectional view of buried pipeline model for dip-slip fault motion. 

The pipe near the fault usually suffers large deformation, which is not so long, about 10m to 

30m, and the damaged point of pipe also occurs in this pipe segment (LIU Ai-wen, 2004). 

For this, meshing of varying element lengths is considered to optimize the memory and 

time usage. Finer meshing of 0.5 m element lengths are used near the fault region for 20m 

distance on either side. Then for remaining length 1m, element size is used. Pipe is divided 
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in eight equal divisions in circumferential direction and single division is made for wall 

thickness. Near the pipe, soil is meshed by small elements with varying size for the square 

region of 1.2m (Fig. 4). Elements size of soil, which is far from the pipe, is taken as 1.5m. 

Default parameter in evaluation of pipeline performance are considered as maximum fault 

offset ( max ) = 0.6m, pipeline fault crossing angle ( ) = 900, diameter of the pipeline (D) = 

0.61m (24inches), pipeline wall thickness (tp) = 0.0095m (0.375 inches) and depth of the 

buried pipelines(db) = 0.91m (3feet). Performance is evaluated for no internal pressure 

condition. Few assumptions are made in the development of the models. It assumed that 

perfect bond exists between the soil and pipe material. 

2.5   Boundary Conditions 

The target ground displacement in all the models are applied at the bottom, with the free 

top boundary conditions. While on the side boundaries, all nodal degree of freedoms other 

than in the direction of the components of targeted displacements are constrained. In case 

of fault model, total soil mass block is divided into two parts, on either side of the fault 

plane. The fault displacement (Δ) is applied to only one soil block by keeping other one 

fixed. 

In case of the transverse PGD model, lateral displacement is idealized by using beta 

probability density function  suggested by T. O’Rourke and summarised as, 

                                      (15) 

Where sm = 0.5, r’ = 2.5 and τ = 5.0. The maximum PGD (δ) here in this study is taken as 2m 

with the width of PGD zone W = 10, 30 and 50m.  

  

Figure 4. Proposed finite element model of buried pipeline. 
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2.6    Material Modeling 

For pipe Ramberg-Osgood relationship is one of the most widely used models (M. O' 

Rourke 1999, IITK-GSDMA GUIDELINES 2007), while for soil hyperbolic model is common 

(S.L Kramer (2007)). Hence, the same are used in these studies which are summarized 

below: 

      (16) 

Where,  

ε =  Engineering strain 

σ = Stress in the pipe  

Ei =  Initial Young’s modulus 

σy = Yield strain of the pipe material  

r, n =  Ramberg - Osgood parameters adopted as r = 31.50 and  

n= 38.32 Karamitros (2007) 

While the hyperbolic soil model is given as, 

                                       (17) 

where 

τ =  shear stress, 

γ = shear strain 

Gmax =   maximum shear modulus 

τmax =  maximum shear stress 

The API5L-X 65 steel pipe is frequently used in literature (Newmark and Hall, 1975, 

Karamitros 2007 etc.), hence, the same is adopted for this study. Table 2 shows the 

properties used for API5L-X 65 pipe material. While soil is assumed as typical sand with 

initial Young's modulus as Ei = 50Mpa and Poisson ratio 0.4. Table 3 shows constants used 

in hyperbolic model. 

Table 2: Properties of AP15L-X 65 Pipe 

 

 

Properties for  API5L X-65 Pipe Magnitude 

Initial Young’s Modulus (Ei) 210 Gpa 

Yield Stress (σy) 490 Mpa 

Failure Stress (σf) 513 Mpa 

Failure Strain (εf) 4% 

Poisson’s ratio (μ) 0.3 

Density (ρp) 7.8g/cm³ 
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Table 3. Constants for Hyperbolic Model 

 

3.  Results and Discussion 

 

The performance of continuous buried pipeline crossing active fault is studied using 

proposed finite element models. The developed model can be implemented for all sorts of 

fault motion with variation in other geometric parameters. Here case of strike slip is taken 

to determine the influencing on the performance of pipeline for the fault offset ( ), 

pipeline-fault crossing angle (  ), wall thickness to diameter ratio (
D

t p ) depth of the buried 

pipeline (db) and their combinations. In the nonlinear numerical analysis of soil the 

maximum ground displacement is generally restricted up to 5% of the total depth of the 

model beyond which results usually deviate and are unrealistic, hence, maximum 

component of fault offset is limited to 0.6m. Total fault offset of 0.6m is applied with an 

increment of 0.1m. Pipeline fault plane angle is varied from 400 to 1400 with an increment 

of 100. The pipeline wall-thickness 0.0095, 0.0103 and 0.0190 are considered, while depth 

is varied from 2 to 4 feet. 

 

3.1 Pipeline subjected to Strike Slip Fault Motion 

3.1.1 Effect of the Fault Offset 

 

Hence for   = 900 the pipeline is mainly subjected to bending; while for positive   the 

small angle pipeline will be under pure compression. Hence, for determining the effect of 

the fault offset a 600 angle is chosen, where effect of both the direct and bending strain can 

be seen. Figure 5 shows the effect of the fault offset on total and bending strain distribution 

in the pipeline. Maximum fault offset 0.6m is applied with an increment of 0.1m. Generally 

two kinds of failure are associated with pipeline, first material failure when pipe material is 

strained beyond sustainable limit and in general yielding strain and geometric failure in 

which geometry of the pipe is so distorted that pipeline becomes inadequate to pass the 

fluid. From figure 5 (a) it can be seen that maximum strain ( xx = 0.00186) generating in 

the pipeline for fault offset 0.2m is just below the yield strain ( y = 0.002). From which it 

Medium density sand properties Magnitude 

Maximum Shear Modulus (Gmax) 60 Mpa 

Maximum shear Strength (τmax) 0.0216 Map 

Failure Stress (σf) 513 Mpa 

Density (ρs)                                                                   1.44/cm³ 
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can be said that the pipe does not have any serious damage up to 0.2m fault offset. 

Thereafter the difference of the strain curve, near the fault plane continuously increases. 

This indicates that pipe material enters plastic stage. While discussing about the pipeline 

damage there are two points, which are most significant. First, how much material has 

yielded and secondly how much length of the pipe enters in the plastic stage. This has great 

significance in case of post event repair and maintenance. This large longitudinal strain in 

the pipe material further causes reduction in the wall thickness (developing upon Poisson 

ratio), which may not be safe design thickness for the internal pressure and other load.  

 

From figure 5(a) one can see that for the 0.3m fault offset only near the fault plane 

about10m pipe length is beyond the yield strain. While majority of the pipe length just 

crosses the yield strain. Thereafter both length of pipeline crossing yield point and 

maximum strain beyond the yield strain is increasing seriously. For the considered cases 

no large geometric failure is observed. From bending strain distribution curves (Fig. 5b) 

one can observe that bending strain in the pipe is smoothly increasing up to the 0.4 fault 

offset. After that the bending strain distribution curve is slightly disturbing for 0.5 and 

0.6m fault offset at 10m on either side of the fault plane. This kind of disorder mainly 

signifies the local buckling on the pipe. 

 

Figure 5. Effect of fault offset on strain distribution for strike slip with Δy = 0.1m to 

0.6 m andϕ=600(a) Total strain effect. (b) Bending strain effect. 

 

3.1.2 Effect of the Pipeline Fault Angle 

 

The pipeline fault angle is second most vital parameter related to the pipeline performance. 

Hence effect of the pipeline-fault angle ( ) is studied by varying the pipeline-fault angle 

from 400, 600, 800, 900, 1000, 1200to1400 for fault offset of 0.6m. The performance analysis 

of pipeline becomes more complex due to unlike behavior of the pipeline under 

compression and tension. In general, under tension the pipe fails due to excessive straining 

of pipe material, while in case of compression in addition to the material failure geometric 
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failure also takes place. The foremost point that can be observed in the strain distribution 

curve plotted in figure 6 is that the maximum strain developing for negative pipeline fault 

angle ( < 900) is much higher than the positive pipeline fault crossing angle ( >900). The 

reason for this can be understood as, when pipeline is subjected to the compression the 

pipe has a chance of bending and/or buckling and hence the fault offset is accommodated 

by the geometric change without much internal deformation, which leads to lesser internal 

deformation in the pipe. There are two fundament troubles associated with the pipeline 

buckling, firstly it is a sudden phenomenon and may adversely affect the operational 

pipelines.  

Secondly, the large geometric distortion during buckling further causes pressure loss in the 

pipeline, which is the foremost significant parameter for the petroleum pipeline. In case of 

pipeline under tension the whole fault displacement at the pipe fault crossing is needed to 

accommodate the internal deformation of pipeline material. 

 

Figure 6. Effect of pipeline fault angle on total normal strain distribution for strike 

slip with Δy =0.6m 

 

From figure-6 it can also be observed that for ±800angle the total normal strain distribution 

is similar on the opposite sides of zero strain axes. This indicates that the buckling of the 

pipe does not take place for all pipeline fault angles. 
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3.1.3 Effect of Pipeline Wall Thickness to Diameter Ratio 

In general, design of the wall thickness is the main function of internal pressure. Where it is 

designed for hoop and longitudinal stresses and checked for secondary loads like 

overburden and live loads. Nevertheless, the present study shows that the thickness to 

diameter ratio has great hold on the pipeline performance crossing strike slip fault 

especially when pipeline is subjected to the compression. To understand the effect of the 

wall thickness here 0.0095, 0.0136 and 0.0190 are the three wall-thicknesses to diameter 

ratios considered. To have an effect of geometric failure under compression the parametric 

study is performed for   = 400 where pipe can be subjected to sufficient compression.The 

maximum fault offset applied here is 0.47m after which the pipe is subjected to large 

geometric changes which further causes soil failure and diverges numerical analysis. 

 

Figure 7. Effect of pipeline wall thickness to diameter ratio for strike slip with Δy = 

0.46m and ϕ = 400 

 

Geometric failure of the pipe can be more clearly understood by observing the deformation 

of the pipe. Hence, for deformed shapes of the pipes with different wall thickness to 

diameter ratios are plotted in figure 7. From figure, it can be clearly seen that pipe with 

thicker wall thickness is subjected to more geometric changes than the pipe with thinner 

wall thickness. However, thicker wall pipe has higher internal deformation capacity, which 

can be observed in the strain distribution figure 8. Nevertheless for a less strain, the thicker 

pipe got more damage. This clearly indicates geometric failure of the thick wall pipe. The 

reason for this is quite understandable as the thinner wall pipe has lesser moment of 

inertia and can easily bed and deform to accommodate the fault displacement. On other 

hand the thicker wall pipe, which is subjected to less strain indicates lesser internal 



Bhoo-Kampan  

16 

 

deformation, therefore thick wall pipe needs to accommodate fault displacement by large 

geometric deformations. From the above discussion, it is clear that when pipe is subjected 

strike-slip fault with  < 900, thicker pipes are more vulnerable to geometric failure.  

 

If we observe the deformed shape of the pipe in figure 7, it can be seen that the pipe with 

0.0095 wall thickness to diameter ratio is deformed only in the horizontal plane which 

indicates bending of the pipe with strike-slip fault motion. While in case of (
D

tw ) = 0.0136 

the pipe looks like little moved with fault and then bulged in horizontal plane indicating 

geometric failure in plastic stage. Finally in case (
D

tw ) = 0.0190 the pipe is purely buckled in 

vertical plane, which is catastrophic geometric failure. At much lesser depth the depth of 

top soil compares to three remaining directions offering lesser resistance to the buckling of 

pipe. That could be the reason why a strong pipe is buckled in vertical plane. 

 

3.1.4 Effect of the Buried Depth 

 

Here, the effect of the buried depth of pipeline is determined for 2feet, 3feet and 4feet 

depth. The fault offset applied here is 0.6m with pipeline fault angle 600. From Figure 9 it is 

clearly seen that there is no significant effect of the depth on the strain distribution. Fault 

displacement and pipe deformations are happening in the horizontal plane while effect of 

depth is more significant in vertical plane. In addition, the assumption made in the model 

for perfect bonding between pipe and soil diminishes. In case of frictional forces the 

overburden pressure plays a vital role, which directly depends on the buried depth of the 

pipe.  

 

Figure 8. Effect of pipeline wall thickness to diameter ratio for strike slip with Δy = 

0.46m and ϕ = 400 
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Figure 9. Effect of buried depth for strike slip with Δy = 0.6m and ϕ = 600 

 

3.2 Pipeline Subjected to Transverse PGD Motion 

3.2.1 Effect of PGD Zone Width 

The effect of zone width is plotted in figure 10. The maximum displacement applied here is  

0.6m with zone width varying from 10m to 60m. The maximum strain (-8 x 10-4) developed 

here for the considered cases is less than the yield strain (20 x 10-4) indicating that for the 

considered case the pipeline is safe and does not yield. From the figure it can be said that 

the zone width has great influence on the strain distribution in the pipe. The total effect of 

zone width can be considered in terms of maximum strain developing in the pipe, width of 

compression zone and local buckling effect. The maximum strain developing in the pipeline 

on both tension and compression sides are significantly changing with zone width when 

offset of 0.6m is applied. From the results, it can be observed that the strain in the pipe is 

increasing with the zone width up to 30m, thereafter the strain of the pipe is further 

reducing for the larger zone width. This phenomenon can be understood in terms of the 

upper soil movement and pipe length participating for the PGD. For the initial stage up to 

30m zone width, relatively shorter zone width of soil need more deformation to 

accommodate base ground movement. This offers higher resistance to ground movement 

and leads to lesser displacement of the upper soil layer, hence, the pipe displaces for 

smaller deformation, which further leads to lesser strain in the pipe. Thus, it can be 

abridged as small PGD zone width more soil deformation (i.e. higher resistance) and lesser 

upper soil layer movement lead reduced strain in the pipe. On the other hand, as the zone 

width increases, more soil can take part in the PGD, which can deform easily and can 

displace more, leading to more strains in the pipe. However, this phenomenon takes place 
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only up to restricted PGD zone width (e.g. in this case up to 30m), thereafter the maximum 

upper soil displacement is stabilized for given base ground movement. 

 

Figure 10. Effect of zone width on strain for transverse PGD with  = 0.6m and W = 

10 m to 60m 

However, with the increment in the PGD zone more pipe length is available for 

accommodating the ground displacement. As the strain is distributed over a large length 

that further shifts the point of contra-flexure apart and increases the compression zone 

width of the pipe. 

Another significant point here that can be seen is the local buckling effect.For sure, the local 

buckling of the pipe is a vast subject and cannot be covered in this work. However, few 

observations here can be made from figure 10. For the case of 20 and 30m zone width, 

maximum strain level in the pipe is more or less same, though one can see that pipe 

subjected to 30m zone width is exposed to higher buckling. The reason could be the 

pipeline length under compression is increasing with the PGD zone width that makes 

pipeline to easily buckle. Strain drop for the buckling cases are more for example for the 

case of 10m and 50m zone width, maximum compressive strain levels are same but 

pipeline subjected to 50m zone width has higher positive strains. 

 

4. Conclusions 

 

Main conclusions of this study can be stated as the following: 

 Numerical modeling of physical problem if implemented with latest updated 

methods could yield much better results. 

 Apart from material behavior and its failure, geometrical behavior becomes 

important when studies are done on pipes subjected to large ground motions. 
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 Compression failure behavior of the pipelines is catastrophic in nature as it leads to 

sudden buckling. Which crucially depends on the pipe wall thickness. 

 A strike-slip numerical study of buried pipelines with different parameters has 

shown the effect of both direct and bending strain. 

 Though here developed model is implemented on the strike slip fault motion but the 

same can be implemented for other kinds of ground motions. 
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